

TDA8757

Triple 8-bit ADC 170 Msps

Rev. 07 — 28 February 2002

Preliminary data

1. General description

The TDA8757 is a triple 8-bit ADC for the digitizing of large bandwidth RGB/YUV signals at a sampling rate up to 170 Msps.

The IC supports display resolutions up to 1600 × 1200 (UXGA) at 60 Hz.

The IC also includes a PLL that can be locked to the horizontal line frequency and generates the ADC clock. The PLL jitter is minimized for high resolution PC graphics applications. An external clock signal can also be used to clock the ADC.

The outputs are available either on one port up to 110 Msps or on two ports up to 170 Msps. The operating mode is selectable with the serial interface to for either I²C-bus or 3-wire serial bus (3W-bus) operation.

The clamp level, the gain and the other settings are controllable through the serial interface.

2. Features

- Triple 8-bit ADC
- Sampling rate up to 170 Msps
- IC controllable by a serial interface which can be I²C-bus or 3W-bus, selected by a TTL input pin
- Three clamps for programming a clamping code from -63.5 to +64 in steps of $\frac{1}{2}$ LSB (RGB) and from +120 to +136 in steps of $\frac{1}{2}$ LSB (YUV)
- Three controllable amplifiers: gain controlled by the serial interface to produce a full-scale resolution of ½ LSB peak-to-peak
- Amplifier bandwidth of 250 MHz
- Low gain variation with temperature
- PLL controllable through the serial interface to generate the ADC clock which can be locked to any line frequency of 15 to 150 kHz
- Integrated PLL divider
- Programmable phase clock adjustment cells
- Internal voltage regulators
- TTL compatible digital inputs and outputs
- Outputs on one port or demultiplexed on two ports; selectable with the serial interface
- Chip enable, high-impedance ADC output
- Power-down mode
- 1.5 W power dissipation
- Sync on green extractor.

Triple 8-bit ADC 170 Msps

3. Applications

- RGB/YUV high-speed digitizing
- LCD panels drive
- LCD projection systems
- VGA to UXGA (1600 × 1200 at 60 Hz) modes.

4. Quick reference data

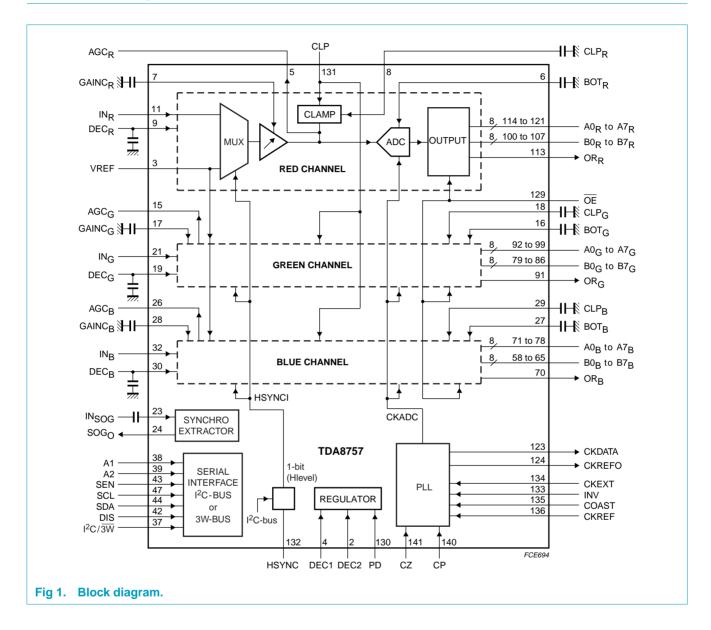
Table 1: Quick reference data

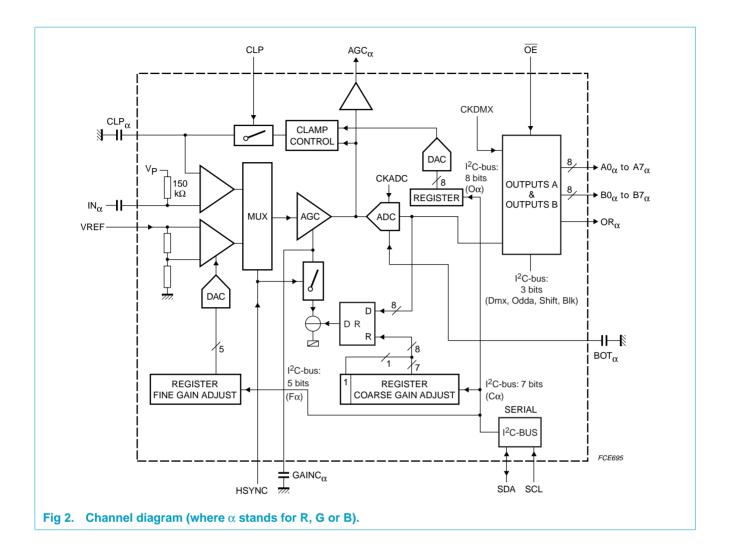
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA}	analog supply voltage for PLL and the RGB channels		4.75	5.0	5.25	V
V_{DDD}	logic supply voltage for I ² C-bus and 3W-bus		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{CCO}	output stages supply voltage for PLL and the RGB channels		4.75	5.0	5.25	V
V _{CCA(PLL)}	analog PLL supply voltage		4.75	5.0	5.25	V
V _{CCO(PLL)}	output PLL supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current for the RGB channels		_	135	_	mA
I _{DDD}	logic supply current for I ² C-bus and 3W-bus		-	1	-	mA
I _{CCD}	digital supply current		_	95	_	mA
I _{cco}	output stages supply current		_	80	_	mA
I _{CCA(PLL)}	analog PLL supply current		_	34	_	mA
f _{clk}	clock frequency	normal (Dmx = 0)	_	-	110	MHz
		de-multiplexed (Dmx = 1)	_	_	170	MHz
f _{ref(PLL)}	PLL reference clock frequency		15	_	150	kHz
f _{PLL}	output clock frequency range		10	-	170	MHz
INL	DC integral non-linearity	from analog input to digital output; full-scale; sinusoidal input; f _{clk} = 170 MHz	-	±0.5	±1.5	LSB
DNL	DC differential non-linearity	from analog input to digital output; full-scale; sinusoidal input; f _{clk} = 170 MHz	-	±0.4	±1	LSB
$\Delta G_{amp} / \Delta T$	amplifier gain stability variation with temperature	V _{ref} = 2.5 V with 100 ppm/°C maximum	_	325	_	ppm/°C
В	amplifier bandwidth	-3 dB; $T_{amb} = 25$ °C	250	_	_	MHz
t _{set(ADC+AGC)}	settling time of the block ADC + AGC	input signal settling time <1 ns; settling to 1%; f _i = 85 MHz	-	4	-	ns

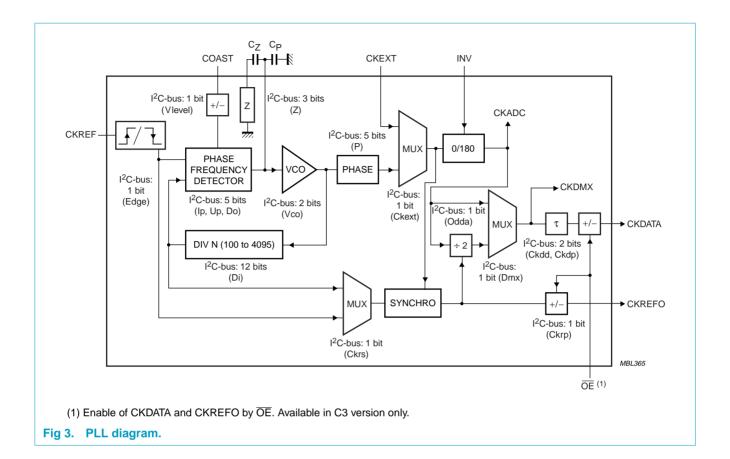
Triple 8-bit ADC 170 Msps

Table 1: Quick reference data...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DR_PLL	PLL divider ratio		100	-	4095	
P _{tot}	total power dissipation	f _{clk} = 170 MHz;sinusoidal input	_	1.5	-	W
JPLL(max)(p-p)	maximum PLL phase jitter (peak-to-peak value)	f _{clk} = 170 MHz	_	360	_	ps

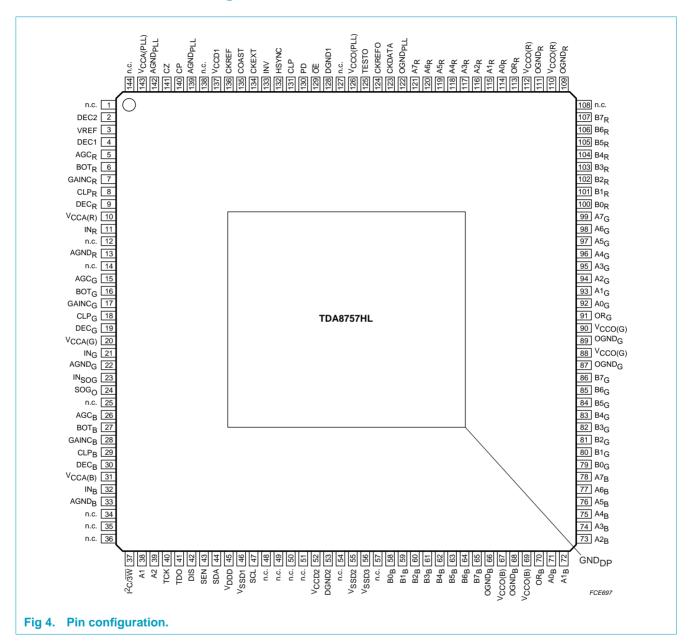

5. Ordering information


Table 2: Ordering information


Type number	Package	Package						
	Name	Description	Version					
TDA8757HL	HLQFP144	plastic, heatsink low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT612-1					

Triple 8-bit ADC 170 Msps

6. Block diagram



Triple 8-bit ADC 170 Msps

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
n.c.	1	not connected
DEC2	2	main regulator decoupling input 2
VREF	3	gain stabilizer voltage reference input
DEC1	4	main regulator decoupling input 1

9397 750 09457

© Koninklijke Philips Electronics N.V. 2002. All rights reserved.

 Table 3:
 Pin description...continued

Symbol	Pin	Description
AGC _R	5	red channel AGC output
BOT _R	6	red channel ladder decoupling input (BOT)
GAINC _R	7	red channel gain capacitor input
CLP _R	8	red channel clamp capacitor input
DECR	9	red channel regulator decoupling input
V _{CCA(R)}	10	red channel analog supply voltage
IN _R	11	red channel analog input
n.c.	12	not connected
$AGND_R$	13	red channel gain analog ground
n.c.	14	not connected
AGC_G	15	green channel AGC output
BOT_G	16	green channel ladder decoupling input (BOT)
$GAINC_G$	17	green channel gain capacitor input
CLP _G	18	green channel clamp capacitor input
DEC_G	19	green channel regulator decoupling input
V _{CCA(G)}	20	green channel analog supply voltage
IN_G	21	green channel analog input
$AGND_G$	22	green channel gain analog ground
IN _{SOG}	23	sync on green channel input
SOGo	24	composite sync output
n.c.	25	not connected
AGC_B	26	blue channel AGC output
BOT_B	27	blue channel ladder decoupling input (BOT)
$GAINC_B$	28	blue channel gain capacitor input
CLPB	29	blue channel clamp capacitor input
DECB	30	blue channel regulator decoupling input
$V_{\text{CCA(B)}}$	31	blue channel analog supply voltage
IN_B	32	blue channel analog input
$AGND_B$	33	blue channel gain analog ground
n.c.	34	not connected
n.c.	35	not connected
n.c.	36	not connected
I ² C/3W	37	selection input between I ² C-bus (active HIGH) and 3W-bus (active LOW)
A1	38	I ² C-bus address control input 1
A2	39	I ² C-bus address control input 2
TCK	40	scan test mode input (active HIGH)
TDO	41	scan test output
DIS	42	I ² C-bus and 3W-bus disable control input (disable at HIGH level)
SEN	43	select enable input for 3W-bus
_		

 Table 3:
 Pin description...continued

Table 3:	Pin descriptioncontinued				
Symbol	Pin	Description			
SDA	44	I ² C-bus/3W-bus serial data input			
V_{DDD}	45	logic I ² C-bus/3W-bus digital supply voltage			
V_{SSD1}	46	logic I ² C-bus/3W-bus digital ground 1			
SCL	47	I ² C-bus/3W-bus serial clock input			
n.c.	48	not connected			
n.c.	49	not connected			
n.c.	50	not connected			
n.c.	51	not connected			
V_{CCD2}	52	digital supply voltage 2			
DGND2	53	digital ground 2			
n.c.	54	not connected			
V_{SSD2}	55	logic I ² C-bus/3W-bus digital ground 2			
V_{SSD3}	56	logic I ² C-bus/3W-bus digital ground 3			
n.c.	57	not connected			
B0 _B	58	blue channel ADC output B bit 0 (LSB)			
B1 _B	59	blue channel ADC output B bit 1			
B2 _B	60	blue channel ADC output B bit 2			
B3 _B	61	blue channel ADC output B bit 3			
B4 _B	62	blue channel ADC output B bit 4			
B5 _B	63	blue channel ADC output B bit 5			
B6 _B	64	blue channel ADC output B bit 6			
B7 _B	65	blue channel ADC output B bit 7 (MSB)			
$OGND_B$	66	blue channel ADC output B ground			
$V_{CCO(B)}$	67	blue channel ADC output B supply voltage			
$OGND_B$	68	blue channel ADC output A ground			
$V_{CCO(B)}$	69	blue channel ADC output A supply voltage			
OR_B	70	blue channel ADC output bit out of range			
A0 _B	71	blue channel ADC output A bit 0 (LSB)			
A1 _B	72	blue channel ADC output A bit 1			
A2 _B	73	blue channel ADC output A bit 2			
A3 _B	74	blue channel ADC output A bit 3			
A4 _B	75	blue channel ADC output A bit 4			
A5 _B	76	blue channel ADC output A bit 5			
A6 _B	77	blue channel ADC output A bit 6			
A7 _B	78	blue channel ADC output A bit 7 (MSB)			
B0 _G	79	green channel ADC output B bit 0 (LSB)			
B1 _G	80	green channel ADC output B bit 1			
B2 _G	81	green channel ADC output B bit 2			
B3 _G	82	green channel ADC output B bit 3			
B4 _G	83	green channel ADC output B bit 4			
B5 _G	84	green channel ADC output B bit 5			
· ·					

Table 3: Pin description...continued

Sumbol	Pin description	
Symbol	Pin	Description
B6 _G	85	green channel ADC output B bit 6
B7 _G	86	green channel ADC output B bit 7 (MSB)
OGND _G	87	green channel ADC output B ground
$V_{CCO(G)}$	88	green channel ADC output B supply voltage
OGND _G	89	green channel ADC output A ground
$V_{CCO(G)}$	90	green channel ADC output A supply voltage
OR _G	91	green channel ADC output bit out of range
A0 _G	92	green channel ADC output A bit 0 (LSB)
A1 _G	93	green channel ADC output A bit 1
A2 _G	94	green channel ADC output A bit 2
A3 _G	95	green channel ADC output A bit 3
A4 _G	96	green channel ADC output A bit 4
A5 _G	97	green channel ADC output A bit 5
A6 _G	98	green channel ADC output A bit 6
A7 _G	99	green channel ADC output A bit 7 (MSB)
B0 _R	100	red channel ADC output B bit 0 (LSB)
B1 _R	101	red channel ADC output B bit 1
B2 _R	102	red channel ADC output B bit 2
B3 _R	103	red channel ADC output B bit 3
B4 _R	104	red channel ADC output B bit 4
B5 _R	105	red channel ADC output B bit 5
B6 _R	106	red channel ADC output B bit 6
B7 _R	107	red channel ADC output B bit 7 (MSB)
n.c.	108	not connected
$OGND_R$	109	red channel ADC output B ground
$V_{CCO(R)}$	110	red channel ADC output B supply voltage
$OGND_R$	111	red channel ADC output A ground
V _{CCO(R)}	112	red channel ADC output A supply voltage
OR _R	113	red channel ADC output A bit out of range
A0 _R	114	red channel ADC output A bit 0 (LSB)
A1 _R	115	red channel ADC output A bit 1
A2 _R	116	red channel ADC output A bit 2
A3 _R	117	red channel ADC output A bit 3
A4 _R	118	red channel ADC output A bit 4
A5 _R	119	red channel ADC output A bit 5
A6 _R	120	red channel ADC output A bit 6
A7 _R	121	red channel ADC output A bit 7 (MSB)
OGND _{PLL}		PLL digital ground
CKDATA	123	output data clock
CKREFO		output horizontal pulse synchronized to pixel clock
TESTO	125	output reserved for test
	0	

Triple 8-bit ADC 170 Msps

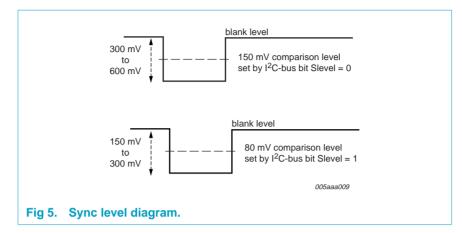
Table 3: Pin description...continued

Symbol	Pin	Description
V _{CCO(PLL)}	126	PLL output supply voltage
n.c.	127	not connected
DGND1	128	digital ground 1
ŌĒ	129	output enable; active LOW (when $\overline{\text{OE}}$ is HIGH, the outputs are high-impedance)
PD	130	power-down control input (IC is in Power-down mode when this pin is HIGH)
CLP	131	clamp pulse input (clamp active HIGH)
HSYNC	132	horizontal synchronization pulse input
INV	133	PLL clock output inverter control input (invert when HIGH)
CKEXT	134	external clock input
COAST	135	PLL coast control input
CKREF	136	PLL reference clock input
V _{CCD1}	137	digital supply voltage 1
n.c.	138	not connected
AGND _{PLL}	139	PLL analog ground
СР	140	PLL filter input
CZ	141	PLL filter input
AGND _{PLL}	142	PLL analog ground
V _{CCA(PLL)}	143	PLL analog supply voltage
n.c.	144	not connected
GND _{DP}	exposed die	e pad connection

8. Functional description

This triple high-speed 8-bit ADC is designed to convert RGB/YUV signals, coming from an analog source, into digital data used by a LCD driver (pixel clock up to 170 MHz).

8.1 Analog video inputs

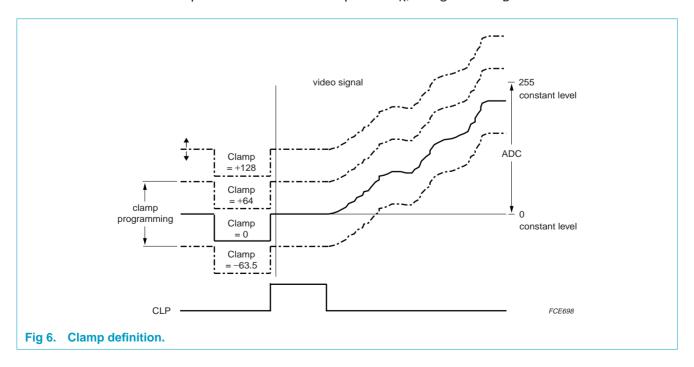

The RGB/YUV video inputs are externally AC coupled and are internally DC polarized.

The synchronization signals are also used for the internal PLL and the gain calibration.

If the green video signal has composite sync (sync on green), it is possible to extract this composite sync by connecting the green signal to pin IN_{SOG} (AC coupled). When the sync pulse amplitude is below 300 mV, the I²C-bus bit 'Slevel' has to be set to logic 1 (see Figure 5). The maximum amplitude for the sync pulse is 600 mV.

The composite sync is available at pin SOG_O (TTL level compatible signal).

Triple 8-bit ADC 170 Msps



If this function is not used, pin IN_{SOG} should be connected to the analog power supply. In this event, pin SOG_O is at LOW-level TTL.

8.2 Clamps

Three independent parallel clamping circuits are used to clamp the video input signals on several black levels. The clamping levels may be set from -63.5 to +64 LSBs (RGB) and from +120 to +136 LSBs in steps of $\frac{1}{2}$ LSB (YUV). They are controlled by changing the values in three 8-bit registers: OFFSETR, OFFSETG and OFFSETB (see Table 5). Each clamp must be able to correct an offset from ± 100 mV to ± 10 mV within 300 ns, and correct the total offset in 10 lines.

The clamping is done using the following principle: On the incoming of a TTL positive going pulse supplied on pin CLP, three external capacitors are loaded independently by the device in order to change the voltage level of each analog RGB input. The capacitors are connected to pins CLP_R, CLP_G and CLP_B.

Triple 8-bit ADC 170 Msps

8.2.1 Variable gain amplifiers

Three independent variable gain amplifiers are used to provide a full-scale input signal to the 8-bit ADC for each channel. The gain adjustment range is designed so that for an input range varying from 0.4 to 1.2 V (p-p), the output signal corresponds to the ADC full-scale input of 1 V (p-p).

To ensure that the gain does not vary over the whole operating temperature range, a reference voltage V_{ref} = 2.5 V (DC) with a maximum variation of 100 ppm/°C, is supplied externally on pin VREF.

The calibration of the gains is done using the following principle: On the incoming of a pulse supplied to pin HSYNC, an internal multiplexer switches from the RGB video signals to a reference voltage ($^{1}/_{16}V_{ref}$). The ADCs inputs become this reference signal and the three corresponding outputs are compared to pre-set values loaded in three 7-bit registers: COARSER, COARSEG and COARSEB. Depending on the result of the comparisons, the three gains are adjusted such that the ADC outputs become equal to the pre-set values in the registers. The three gains are simply controlled by changing the values in the COARSE registers.

The signal supplied on pin HSYNC, may be selected active HIGH or active LOW. The choice is done through the serial interface by setting bit 'Hlevel' in the control register (active HIGH when bit Hlevel = 0).

This active part of the signal has to occur during the blanking period of the signal in order not to interrupt the active video. Normally the horizontal synchronization signal, provided by the video source, is connected to pin HSYNC.

The values loaded in the gain registers (COARSER, COARSEG, COARSEB) are chosen among 68 values (see Table 6).

A fine correction is also used to finely tune the gain on the three channels and to compensate the channel-to-channel gain mismatch. The fine correction is done using the following principle: the three binary codes, stored in the three 5-bit registers (FINER, FINEG and FINEB) are converted into three analog voltages (with three DACs) and are independently added to the reference voltage ($\frac{1}{16}V_{ref}$). Thus, three different reference voltages are used for the gain calibration of the three channels.

When the COARSE registers are set at full-scale, the resolution of the fine registers corresponds to $\frac{1}{2}$ LSB peak-to-peak (see Equation 3).

8.2.2 Important recommendations

The clamping and the gain calibration requires two external signals (pulses). One signal is connected to pin CLP and the other is connected to pin HSYNC. It is very important that:

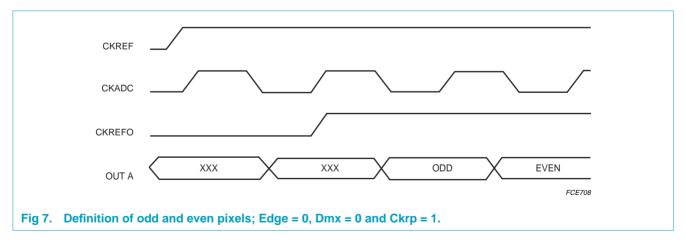
- The active part of these two signals occur during the blanking of the video signal, in order not to interrupt or disturb the active video.
- The active part of these two signals does not overlap on each other, in order to perform correctly the gain calibration and the clamping. Normally the clamp pulse is sent after the end of the horizontal synchronization pulse.

Triple 8-bit ADC 170 Msps

8.2.3 ADCs

Three ADCs convert analog signals into three series of 8-bit codes, with a maximum clock frequency of 170 Msps. The ADCs input range is 1 V (p-p) full-scale and the pipeline delay is 1 clock cycle from the sampling to the data output. The reference ladder regulators are integrated.

8.2.4 Data outputs


ADC outputs are straight binary. Pin \overline{OE} switches the output status between active and high-impedance (\overline{OE} = HIGH). It is possible to force the outputs with a maximum 10 pF capacitive load. The timing must be checked very carefully if the capacitive loads are more than 10 pF.

It is possible to force the outputs to logic 0 during the gain calibration (during HSYNC pulse) and during the clamping (CLP pulse). This mode is activated through the serial interface by setting bit 'Blk' to logic 1 in register DEMUX.

The TDA8757 provides outputs either on one port (port A) or on two ports (ports A and B). The selection is made with the serial interface by setting bit 'Dmx' to logic 0 or logic 1 in register DEMUX. When just one port is used (Dmx = 0), the unused ports are forced to LOW level. When two ports are used (Dmx = 1), it is possible to select the port that would provide the odd pixel by setting bit 'Odda' to logic 1 or logic 0 in register DEMUX; when this bit is logic 1, the odd pixel is output on port A.

One out-of-range bit exists per channel (OR_R , OR_G and OR_B). It will be at logic 1 when the signal is out-of-range of the ADC voltage ladder.

Finally, two configurations are possible: either the port A outputs and the port B outputs are both synchronous or they are interleaved. The selection is done by setting bit 'Shift' to logic 0 or logic 1 in register DEMUX.

8.2.5 PLL

The ADCs are clocked by either the internal PLL locked to the reference clock CKREF or an external clock connected to pin CKEXT. All parts of the PLL are on-chip except the loop filter capacitance. The selection is performed via the serial interface by setting bit 'Ckext' in register PHASE (Ckext = 1 when the external clock is used).

Triple 8-bit ADC 170 Msps

The reference clock (CKREF) range is between 15 and 150 kHz. Consequently, the VCO minimum frequency is 12 MHz and the maximum frequency is 170 MHz. The gain of the VCO part can be controlled through the serial interface, depending on the frequency range to which the PLL is locked.

Moreover, the PLL may be locked either on the rising or on the falling edge of the CKREF signal pulses. This choice is made through the serial interface by setting bit 'Edge' in register CONTROL (rising edge when bit 'Edge' = 0).

The charge pump current (I_{cp}) enables an increase of PLL bandwidth. It is programmable through the serial interface by setting bits 'Ip2', 'Ip1' and 'Ip0' in the control register (see Table 8).

Different resistance values (R) for the filter can also be programmed through the serial interface by setting the bits 'Z2', 'Z1' and 'Z0' in register VCO (see Table 9).

To have optimal PLL performance, R and Icp must be chosen so that:

- ullet The result of the product 'R \times I_{cp}' is smaller than a determined limit (Lim)
- The result of the product 'R \times I_{cp}' is as close as possible to this limit (Lim).

$$Lim = \frac{0.3\pi \times DR_{PLL} \times f_{ref}}{K_0} \tag{1}$$

where:

- DR_{PLL} = the divider ratio, which is the ratio between the pixel frequency and the horizontal line frequency of the incoming signal. The setting of this parameter is performed through the serial interface with bits Di0 to Di11. These bits are present in the VCO-, divider- and phase registers.
- f_{ref} = the frequency of the signal.
- K₀ = the VCO gain, which depends on the pixel frequency ranges given in Table 10.

In the event that several combinations of R and I_{cp} give the same result, a calculation of the damping factor (ξ) for each combination becomes necessary.

The combination of R and I_{cp} whose damping factor is the closest to 1.5, generates the optimal PLL performance.

$$\xi = \frac{R \cdot C_Z}{2} \cdot \sqrt{\frac{K_0 \cdot I_{cp}}{DR_{PLL} \cdot (C_Z + C_P)}}$$
 (2)

where C_Z and C_P are the external capacitors of the PLL loop filter. The recommended values are: $C_Z = 68$ nF and $C_P = 150$ pF.

The COAST signal is used to disconnect the PLL phase frequency detector during the frame flyback (vertical blanking) or during the unavailability of the CKREF signal. This signal can normally be derived from the VSYNC signal.

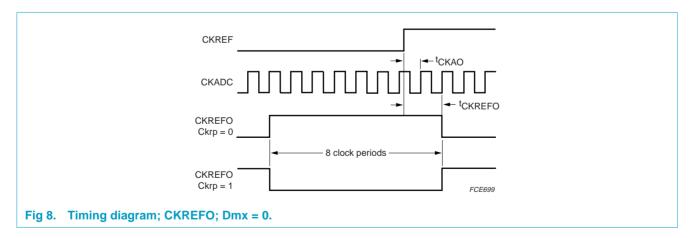
COAST may be set either active HIGH or active LOW by setting bit 'Vlevel' in the control register through the serial interface (Vlevel = 0 when HIGH).

Triple 8-bit ADC 170 Msps

It is possible to control the phase of the ADC clock (CKADC) through the serial interface with the included digital phase-shift controller. The phase register (5 bits) enables the phase to shift by steps of 11.25 $^{\circ}$.

The CKREF signal is re-synchronized by the synchro-block on the CKADC clock. The new reference is available on pin CKREFO. This synchronization may be done with the CKREF signal directly, or with the output of the divider in the PLL (see Figure 3).

The selection is done via the serial interface by setting bit 'Ckrs' in the phase register (Ckrs = 1 when the CKREF signal is used). The polarity of the signal on pin CKREFO is controlled through the serial interface by setting bit 'Ckrp' in register DEMUX (positive polarity if Ckrp = 0). The width of this signal is fixed to 8 clock cycles.


The PLL also provides a CKDATA clock. This clock is synchronized on the data outputs whatever the output mode.

It is possible to delay the CKDATA clock with a constant time (τ = 3 ns, compared to the outputs) by setting bit 'Ckdd' to logic 1 in register DEMUX. It is also possible to reverse the CKDATA clock, referenced to the outputs, by setting bit 'Ckdp' in register DEMUX.

The maximum capacitive load for each clock output is 10 pF, and pin \overline{OE} switches the output status between active and high impedance (\overline{OE} = HIGH).

If an external clock is used, it has to be connected to pin CKEXT. Bit 'Ckext' and bit 'Ckrs' in the phase register have to be set at logic 1, and it is also important to disconnect the internal PLL by using the following settings:

- Set bit 'Do' in the control register to logic 1.
- Set bits 'Vco1' and 'Vco0' in register VCO to logic 0.

There is a delay between the input signal on pin CKREF and the corresponding output on pin CKREFO; see Figure 8. This delay is t_{CKREFO}:

 t_{CKREFO} = either t_{CKAO} (if clock phase >01000) or t_{CKAO} + $T_{CLK(pixel)}$ (if phase <01000)

 $t_{CKAO} = t_{CLK(buffer)} + t_{phase selector}$

 $t_{CLK(buffer)}$ = tbf and $t_{phase\ selector}$ = $\left(\frac{phase}{2\pi}\right) \cdot T_{CLK(pixel)}$

Triple 8-bit ADC 170 Msps

9. I²C-bus and 3W-bus interfaces

9.1 Register definitions

The configuration of the registers is given in Table 4.

Table 4: I²C-bus and 3W-bus registers

Function	Suk	oadd	ress	;					Bit def	finition							Default
name	Α7	A6	A5	A4	А3	A2	A 1	A0	MSB							LSB	value
SUBADDR									Χ	Χ	Χ	Mode	Sa3	Sa2	Sa1	Sa0	XXX1 0000
OFFSETR	Χ	Χ	Χ	Χ	0	0	0	0	Or7	Or6	Or5	Or4	Or3	Or2	Or1	Or0	0111 1111
COARSER	Χ	Χ	Χ	Χ	0	0	0	1	Or8	Cr6	Cr5	Cr4	Cr3	Cr2	Cr1	Cr0	0010 0000
FINER	Χ	Χ	Χ	Χ	0	0	1	0	Χ	Χ	Χ	Fr4	Fr3	Fr2	Fr1	Fr0	XXX0 0000
OFFSETG	Χ	Χ	Χ	Χ	0	0	1	1	Og7	Og6	Og5	Og4	Og3	Og2	Og1	Og0	0111 1111
COARSEG	Χ	Χ	Χ	Χ	0	1	0	0	Og8	Cg6	Cg5	Cg4	Cg3	Cg2	Cg1	Cg0	0010 0000
FINEG	Χ	Χ	Χ	Χ	0	1	0	1	Χ	Χ	Slevel	Fg4	Fg3	Fg2	Fg1	Fg0	XXX0 0000
OFFSETB	Χ	Χ	Χ	Χ	0	1	1	0	Ob7	Ob6	Ob5	Ob4	Ob3	Ob2	Ob1	Ob0	0111 1111
COARSEB	Χ	Χ	Χ	Χ	0	1	1	1	Ob8	Cb6	Cb5	Cb4	Cb3	Cb2	Cb1	Cb0	0010 0000
FINEB	Χ	Χ	Χ	Χ	1	0	0	0	Χ	Χ	Χ	Fb4	Fb3	Fb2	Fb1	Fb0	XXX0 0000
CONTROL	Χ	Χ	Χ	Χ	1	0	0	1	Vlevel	Hlevel	Edge	Up	Do	lp2	lp1	lp0	0000 0111
VCO	Χ	Χ	Χ	Χ	1	0	1	0	Z2	Z1	Z0	Vco1	Vco0	Di11	Di10	Di9	1011 1011
DIVIDER (LSB)	Χ	Χ	Χ	Χ	1	0	1	1	Di8	Di7	Di6	Di5	Di4	Di3	Di2	Di1	0100 1100
PHASE	Χ	Χ	Χ	Χ	1	1	0	0	Di0	Ckrs	Ckext	P4	P3	P2	P1	P0	0000 0000
DEMUX	Χ	Χ	Χ	Χ	1	1	0	1	Blk	Cken	Ckrp	Ckdp	Ckdd	Shift	Odda	Dmx	1000 0111

9.1.1 Subaddress

All the registers are defined by a subaddress of 7 bits: bit Mode refers to the mode which is used with the I²C-bus interface, bits 'Sa3' to 'Sa0' give the subaddress of each register.

Bit Mode, used only with the I²C-bus, allows two modes for the programming:

Mode 0 Each register is programmed independently, by giving its subaddress and its content.

Mode 1 All the registers are programmed one after the other, by giving this initial condition (XXX1 1111) as the subaddress state; thus, the registers are changed following the predefined sequence of 16 bytes (from subaddress 0000 to 1101).

The default values correspond to a VESA 1280 $\times\,1024$ at 75 Hz graphic mode.

9.1.2 Offset register

This register controls the clamp level for the RGB channels. The relationship between the programming code and the level of the clamp code is given in Table 5.

Triple 8-bit ADC 170 Msps

Table 5: Coding

Programmed code	Clamp code	ADC output	
0	-63.5		
1	-63	underflow	
2	-62.5	- undemow	
127	0	0	
254	63.5	63 or 64	
255	64	64	
256	120	120	
287	136	136	

The default programmed value is:

- Programmed code = 127
- Clamp code = 0
- ADC output = 0.

9.1.3 Coarse and Fine registers

These two registers enable the gain control: the AGC gain with the coarse register, and the reference voltage with the fine register. The coarse register programming equation is as follows:

$$GAIN = \left(\frac{N_{COARSE} + 1}{V_{ref} \cdot \left(1 - \frac{N_{FINE}}{32 \times 16}\right)}\right) \times \frac{1}{16} = \left(\frac{N_{COARSE} + 1}{V_{ref} \cdot (512 - N_{FINE})}\right) \times 32$$
(3)

Where: $V_{ref} = 2.5 \text{ V}$.

The gain correspondence is given in Table 6. The gain is linear with reference to the programming code ($N_{\text{FINE}} = 0$).

Table 6: Typical gain correspondence (COARSE)

N _{COARSE}	Gain	V _i to be full-scale (V)
32	0.825	1.212
99	2.5	0.4

The default programmed value is as follows:

- N_{COARSE} = 32
- Gain = 0.825
- V_i to be full-scale = 1.212.

Triple 8-bit ADC 170 Msps

To modulate this gain, the fine register is programmed using the above equation. With a full-scale ADC input, the fine register resolution is a $\frac{1}{2}$ LSB peak-to-peak (see Table 7 for N_{COARSF} = 32).

Table 7: Typical gain correspondence (FINE)

N _{FINE}	Gain	V _i to be full-scale (V)
0	0.825	1.212
31	0.878	1.139

The default programmed value is: $N_{FINF} = 0$.

9.1.4 Control register

COAST and HSYNC signals can be derived by setting the I²C-bus control bits 'Vlevel' and 'Hlevel' respectively. When bits 'Vlevel' and 'Hlevel' are set to zero, COAST and HSYNC are active HIGH.

Bit 'Edge' defines the rising or falling edge of CKREF to synchronize the PLL. It will be on the rising edge if the bit is a logic 0 and on the falling edge if the bit is at logic 1.

Bits 'Up' and 'Do' are used for the test, to force the charge pump current. These bits have to be logic 0 during normal use.

Bit 'Cken' is used for the test to check the CKADC internal signal. This bit has to be logic 0 during normal use.

Bits 'lp0', 'lp1' and 'lp2' control the charge pump current, to increase the bandwidth of the PLL, as shown in Table 8.

Table 8: Charge pump current control

lp2	lp1	lp0	Current (μA)
0	0	0	6.25
0	0	1	12.5
0	1	0	25
0	1	1	50
1	0	0	100
1	0	1	200
1	1	0	400
1	1	1	700

The default programmed value is as follows:

- Charge pump current = 700 μA
- Bits 'Up' and 'Do' are used for testing, normally they are set to logic 0
- Rising edge of CKREF: bit 'Edge' at logic 0
- COAST and HSYNC inputs are active HIGH: bits 'Vlevel' and 'Hlevel' at logic 0.

9.1.5 VCO register

Bits 'Z2', 'Z1' and 'Z0' enable the internal resistance for the VCO filter to be selected.

Triple 8-bit ADC 170 Msps

Table 9: VCO register bits

Z2	Z1	Z 0	Resistance (kΩ)
0	0	0	high-impedance
0	0	1	9
0	1	0	6.4
0	1	1	4.5
1	0	0	3.2
1	0	1	2.25
1	1	0	1.6
1	1	1	1.1

Bits 'Vco1' and 'Vco0' control the VCO gain.

Table 10: VCO gain control

Vco1	Vco0	VCO gain (MHz/V)	Pixel clock frequency range (MHz)
0	0	12	10 to 20
0	1	20	20 to 40
1	0	40	40 to 85
1	1	70	85 to 170

The default programmed value is as follows:

- Internal resistance = 2.25 $k\Omega$
- VCO gain = 70 MHz/V.

9.1.6 Divider register

This register controls the PLL frequency. Bits 'Di8' to 'Di0' are the LSB bits. The default programmed value is 0110 1001 1000 = 1688.

The MSB bits ('Di11', 'Di10' and 'Di9') and the LSB bit 'Di0' have to be programmed before bits 'Di8' to 'Di1' in order to have the required divider ratio. Bit 'Di0' is used for the parity divider number (Di0 = 0: even number; Di0 = 1: odd number). It should be noted that if the I^2C -bus programming is done in mode 1 and the bit 'Di0' has to be toggled, then the registers have to be loaded twice to update the divider ratio.

9.1.7 Phase register

Bit 'Ckext' is logic 0 when the PLL clock is used, and logic 1 when the external clock is used.

Bit 'Ckrs' is logic 1 when the synchronization is done with CKREF (see Figure 3).

Bits 'P4' to 'P0' are used to program the phase shift for the clock pixel.

Triple 8-bit ADC 170 Msps

Table 11: Phase registers bits

P4	P3	P2	P1	P0	Phase shift (deg)
0	0	0	0	0	0
0	0	0	0	1	11.25
1	1	1	1	0	337.5
1	1	1	1	1	348.75

The default programmed value is as follows:

- No external clock: bit 'Ckext' is logic 0
- Phase shift for CKDATA is 0 degrees.

9.1.8 **DEMUX** register

The default programming is:

- Outputs forced to logic 0 during CLP and HSYNC pulses: bit 'Blk' = 1
- CKREFO with positive polarity: bit 'Ckrp' = 0
- CKDATA not reversed: bit 'Ckdp' = 0
- CKDATA not delayed: bit 'Ckdd' = 0
- De-multiplexed outputs: bit 'Dmx' = 1
- Interleaved outputs: bit 'Shift' = 1
- Odd pixels on port A: bit 'Odda' = 1.

9.1.9 Power-down mode

- When the supply is completely switched off, the registers are set to their default values; in that event they have to be reprogrammed if the required settings are different (e.g. through an EEPROM)
- When the device is in Power-down mode (pin PD = HIGH), the previously programmed register values remain unaffected.

9.2 I²C-bus protocol

Table 12: Register format

A6	A5	A4	A3	A2	A1	A0	RW
1	0	0	1	1	A2	A1	0

The address of the circuit for the I²C-bus is 1001 1XX0.

Bits 'A1' and 'A0' are fixed by the potential on pins A2 and A1. Bit 'RW' must always be equal to logic 0 because it is not possible to read the data in the register. The timing and protocol for the I²C-bus are standard. Two sequences are available; see Table 13 and 14.

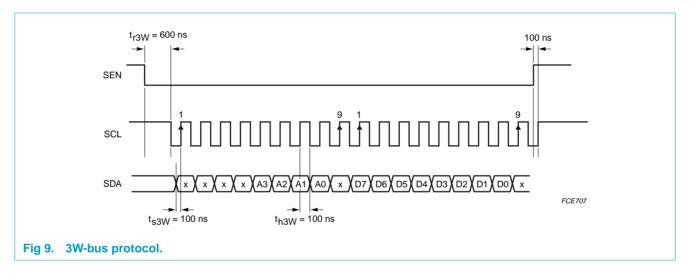
Triple 8-bit ADC 170 Msps

Table 13: Address sequence for mode 0

S = START condition, A = acknowledge bit (generated by the device) and P = STOP condition.

S	IC ADDRESS A	SUBADDRESS A	DATA	Α	SUBADDRESS	Α	 Р
		REGISTER1	REGISTER1		REGISTER2		
			(see Table 4)				

Table 14: Address sequence for mode 1


S = START condition, A = acknowledge bit (generated by the device) and P = STOP condition.

			-					
S	IC ADDRESS A	SUBADDRESS A	DATA	Α	DATA	Α	 Р	
		XX11 1111	REGISTER1		REGISTER2			
			(see Table 4)					

9.3 3W-bus protocol

For the 3W-bus, the first byte refers to the register address which is programmed. The second byte refers to the data to be sent to the chosen register (see Table 4).

Using a 3W-bus interface, an indefinite number of ICs can operate on the same system. Pin SEN is used to validate the circuits.

10. Limiting values

Table 15: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CCA}	analog supply voltage		-0.3	+7.0	V
V_{DDD}	logic supply voltage		-0.3	+7.0	V
V_{CCD}	digital supply voltage		-0.3	+7.0	V
V _{CCO}	output stages supply voltage		-0.3	+7.0	V

Triple 8-bit ADC 170 Msps

Table 15: Limiting values...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
ΔV_{CC}	supply voltage differences				
	$V_{CCA} - V_{CCD}$		-1.0	+1.0	V
	$V_{CCO} - V_{CCD}$		-1.0	+1.0	V
	$V_{CCO} - V_{DDD}$		-1.0	+1.0	V
	$V_{CCA} - V_{DDD}$		-1.0	+1.0	V
	$V_{CCD} - V_{DDD}$		-1.0	+1.0	V
	$V_{CCA} - V_{CCO}$		-1.0	+1.0	V
$V_{i(RGB)} \\$	RGB input voltage range	referenced to AGND	-0.3	+7.0	V
Io	output current		_	10	mA
T _{stg}	storage temperature		– 55	+150	°C
T_{amb}	ambient temperature		0	70	°C
T _j	junction temperature		_	150	°C

11. Thermal characteristics

Table 16: Typical thermal characteristics

Symbol	Parameter	Conditions	Value	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	30	K/W

12. Characteristics

Table 17: Characteristics

 $V_{CCA} = 4.75 \text{ V}$ to 5.25 V (referenced to AGND); $V_{CCD} = 4.75 \text{ V}$ to 5.25 V (referenced to DGND); $V_{DDD} = 4.75 \text{ V}$ to 5.25 V (referenced to V_{SSD}); $V_{CCO} = 4.75 \text{ V}$ to 5.25 V (referenced to OGND); AGND, DGND, OGND and V_{SS} connected together; $T_{amb} = 0$ to 70 °C; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \text{ V}$ and $T_{amb} = 25 \text{ °C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
$V_{\text{CCA(PLL)}}, \\ V_{\text{CCA(R)}}, \\ V_{\text{CCA(G)}}, \\ V_{\text{CCA(B)}}$	analog supply voltage for PLL and the RGB channels		4.75	5.0	5.25	V
V_{DDD}	logic supply voltage for I ² C-bus and 3W-bus		4.75	5.0	5.25	V
V_{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{CCO(PLL)} , V _{CCO(R)} , V _{CCO(G)} , V _{CCO(B)}	output stages supply voltage for PLL and the RGB channels		4.75	5.0	5.25	V
I _{CCA(PLL)}	analog PLL supply current		-	34	-	mA

Triple 8-bit ADC 170 Msps

Table 17: Characteristics...continued

 $V_{CCA} = 4.75 \ V$ to $5.25 \ V$ (referenced to AGND); $V_{CCD} = 4.75 \ V$ to $5.25 \ V$ (referenced to DGND); $V_{DDD} = 4.75 \ V$ to $5.25 \ V$ (referenced to V_{SSD}); $V_{CCO} = 4.75 \ V$ to $5.25 \ V$ (referenced to OGND); AGND, DGND, OGND and V_{SS} connected together; $T_{amb} = 0$ to $70 \ ^{\circ}C$; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \ V$ and $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CCA(R)} , I _{CCA(G)} , I _{CCA(B)}	analog supply current for the RGB channels		-	135	-	mA
I _{DDD}	logic supply current for I ² C-bus and 3W-bus		_	1	_	mA
I _{CCD}	digital supply current		_	95	_	mA
I _{CCO(R)} , I _{CCO(G)} , I _{CCO(B)} , I _{CCO(PLL)}	output stages supply current for the RGB channels and PLL	sinusoidal input	-	80	_	mA
ΔV_{CC}	supply voltage difference					
	$V_{CCA} - V_{CCD}$		-0.25	_	+0.25	V
	V _{CCO} – V _{CCD}		-0.25	_	+0.25	V
	$V_{CCO} - V_{DDD}$		-0.25	_	+0.25	V
	$V_{CCA} - V_{DDD}$		-0.25	_	+0.25	V
	$V_{CCD} - V_{DDD}$		-0.25	_	+0.25	V
	$V_{CCA} - V_{CCO}$		-0.25	_	+0.25	V
P _{tot}	total power dissipation	sinusoidal input	_	1.5	_	W
P_{pd}	power dissipation in Power-down mode		_	55	_	mW
R, G and B an	nplifiers					
В	bandwidth	-3 dB; $T_{amb} = 25$ °C	250	_	_	MHz
t _{set(ADC+AGC)}	settling time of the block ADC + AGC	full-scale (black to white) transition; input signal settling time <1 ns; settling to within 2 LSB	-	4	_	ns
G _{COARSE}	coarse gain range	minimum coarse gain; code = 32	_	-1.67	_	dB
		maximum coarse gain; code = 99	-	8	-	dB
G _{FINE}	fine gain correction range	minimum fine input code = 0	_	0	_	dB
		maximum fine input code = 31	_	-0.5	_	dB
$\Delta G_{amp} / \Delta T$	amplifier gain stability variation with temperature	V _{ref} with 100 ppm/°C maximum variation	-	325	-	ppm/°C
I _{GC}	gain current		_	±20	_	μΑ
t _{stab}	amplifier gain adjustment speed from minimum to maximum gain	HSYNC active; capacitors on pins 8, 16 and 24 are 22 nF	-	25	-	mdB/μs
V_{ref}	amplifier reference voltage		_	2.5	_	V

Triple 8-bit ADC 170 Msps

Table 17: Characteristics...continued

 $V_{CCA} = 4.75 \ V$ to $5.25 \ V$ (referenced to AGND); $V_{CCD} = 4.75 \ V$ to $5.25 \ V$ (referenced to DGND); $V_{DDD} = 4.75 \ V$ to $5.25 \ V$ (referenced to V_{SSD}); $V_{CCO} = 4.75 \ V$ to $5.25 \ V$ (referenced to OGND); AGND, DGND, OGND and V_{SS} connected together; $T_{amb} = 0$ to $70 \ ^{\circ}C$; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \ V$ and $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{ref}	amplifier reference voltage current		_	50	_	μΑ
$V_{i(p-p)}$	input voltage (peak-to-peak value)	corresponding to full-scale input at high gain	_	0.4	_	V
		corresponding to full-scale output at low gain	-	-	1.212	V
C _i	input capacitance		_	10	_	pF
G _{E(rms)}	channel-to-channel gain matching (RMS value)	maximum coarse gain; T _{amb} = 25 °C	-	1	-	%
		minimum coarse gain; T _{amb} = 25 °C	-	5	_	%
Clamps						
P _{CLP}	precision	maximum black level noise on RGB channels = 10 mV; T_{amb} = 25 °C	-	0.5	-	LSB
t _{W(CLP)}	clamp pulse width		500	_	2000	ns
CLP _E	channel-to-channel clamp matching		-	0.5	_	LSB
A _{off}	code clamp reference	clamp register input code = 0	-	-63.5	_	LSB
		clamp register input code = 255	_	+64	_	LSB
		clamp register input code = 256	-	+120	_	LSB
		clamp register input code = 287	-	+135.5	_	LSB
Phase-locked	loop (PLL)					
jPLL(max)(p-p)	long term PLL phase jitter (peak-to-peak value)	f _{clk} = 170 MHz	-	360	-	ps
DR	divider ratio		100	_	4095	_
f _{ref}	reference clock frequency		15	_	150	kHz
f _{PLL}	output clock frequency		10	_	170	MHz
$\Delta\Phi_{\sf step}$	phase drift ^[1]	standard at 160 Msps	_	_	2	step
$\Phi_{\sf step}$	phase shift step	T _{amb} = 25 °C	_	11.25	_	deg
ADCs						
f _s	maximum sampling frequency		170	_	_	MHz
INL	DC integral non-linearity	from IC analog input to digital output; sinusoidal input; f _{clk} = 170 MHz	_	±0.5	±1.5	LSB
	DC differential non-linearity	from IC analog input to		±0.4	±1	LSB

Triple 8-bit ADC 170 Msps

Table 17: Characteristics...continued

 $V_{CCA} = 4.75 \ V$ to $5.25 \ V$ (referenced to AGND); $V_{CCD} = 4.75 \ V$ to $5.25 \ V$ (referenced to DGND); $V_{DDD} = 4.75 \ V$ to $5.25 \ V$ (referenced to V_{SSD}); $V_{CCO} = 4.75 \ V$ to $5.25 \ V$ (referenced to OGND); AGND, DGND, OGND and V_{SS} connected together; $T_{amb} = 0$ to $70 \ ^{\circ}C$; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \ V$ and $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ENOB ^[2]	effective number of bits		_	7.4	_	bits
Signal-to-no	oise ratio					
S/N	signal-to-noise ratio	$f_{clk} = 170 \text{ MHz}$	_	46	_	dB
Spurious fre	ee dynamic range					
SFDR	spurious free dynamic range	$f_{clk} = 170 \text{ MHz}$	_	57	_	dB
Clock timing	g output (CKDATA)					
η_{ext}	ADC clock duty factor		45	50	55	%
f _{clk(max)}	maximum clock frequency		_	_	170	MHz
Clock timing	g input (CKEXT)					
f _{clk(max)}	maximum clock frequency		_	_	170	MHz
t _{CPH}	clock pulse width HIGH		2.5	_	_	ns
t _{CPL}	clock pulse width LOW		2.5	_	_	ns
Data timing	[3]					
t _{d(s)}	sampling delay time	all times referenced to 50% of	_	-7.5	_	ns
t _{su(d)(o)}	output data set-up time	the rising edge of CKDATA; see	_	-7	_	ns
t _{h(o)}	output hold time	Figure 10	_	1	_	ns
3-state outp	ut delay time					
t _{dZH}	output enable HIGH		_	15	_	ns
t _{dZL}	output enable LOW		_	18	_	ns
t _{dHZ}	output disable HIGH		_	13	_	ns
t_{dLZ}	output disable LOW		_	10	_	ns
Data and sy	nc outputs					
V_{OL}	LOW-level output voltage	$I_0 = 1 \text{ mA}$	_	_	0.4	V
V _{OH}	HIGH-level output voltage	$I_0 = 1 \text{ mA}$	2.4	_	_	V
l _{OL}	LOW-level output current	V _{OL} = 0.2 V	_	0.2	_	mA
I _{OH}	HIGH-level output current	V _{OH} = 3.4 V	_	0.3	_	mA
C _L	load capacitance		_	10	_	pF
TTL digital i	nputs (CKREF, COAST, INV, HSYNC,	CLP, PD, DIS, I ² C/ 3W , OE , CKE	XT)			
V_{IL}	LOW-level input voltage		-	_	8.0	V
V_{IH}	HIGH-level input voltage		2.0	_	_	V
I _{IL}	LOW-level input current		_	400	_	μΑ
I _{IH}	HIGH-level input current		_	35	_	μΑ
Z _i	input impedance		_	tbf	_	kΩ
C _i	input capacitance		_	tbf	_	pF
Sync on gre	en input					
$V_{\text{sync}(G)}$	sync on green pulse amplitude [4]	Slevel = 0; see Figure 5	300	_	600	mV
. ,		Slevel = 1; see Figure 5	150	_	300	mV

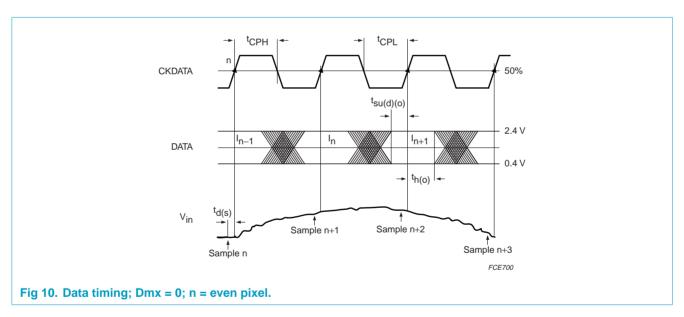
Triple 8-bit ADC 170 Msps

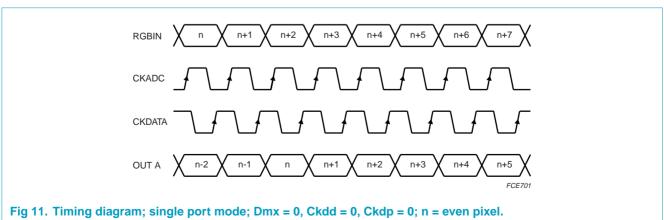
Table 17: Characteristics...continued

 $V_{CCA} = 4.75 \text{ V}$ to 5.25 V (referenced to AGND); $V_{CCD} = 4.75 \text{ V}$ to 5.25 V (referenced to DGND); $V_{DDD} = 4.75 \text{ V}$ to 5.25 V (referenced to V_{SSD}); $V_{CCO} = 4.75 \text{ V}$ to 5.25 V (referenced to OGND); AGND, DGND, OGND and V_{SS} connected together; $T_{amb} = 0$ to $70 \,^{\circ}\text{C}$; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
_	Farameter	Conditions	IVIIII	тур	IVIAX	Onit
3W-bus						
t _{rst}	reset time of the chip before 3-wire communication		_	600	_	ns
t _{su}	data set-up time for 3-wire communication		_	100	_	ns
t _h	data hold time for 3-wire communication		-	100	_	ns
I ² C-bus ^[5]						
V _{IL}	LOW-level input voltage	for SCL and SDA	-	_	$0.3V_{DD}$	V
V _{IH}	HIGH-level input voltage	for SCL and SDA; V _{PU} = 5 V	3	_	_	V
		for SCL and SDA; V _{PU} = 3 V	$0.7V_{DD}$	_	_	
f _{SCL}	clock frequency		0	_	100	kHz
t _{BUF}	time the bus must be free before new transmission can start		4.7	_	_	μs
t _{HD;STA}	start condition hold time		4.0	_	_	μs
t _{SU;STA}	start condition set-up time	repeated start	4.7	_	_	μs
t_{LOW}	LOW-level clock period		4.7	_	_	μs
t _{HIGH}	HIGH-level clock period		4.0	_	_	μs
t _{SU;DAT}	data set-up time		250	_	_	ns
t _{HD;DAT}	data hold time		0	_	_	ns
t _r	SDA and SCL rise time	f _{SCL} = 100 kHz	-	_	1.0	μs
t _f	SDA and SCL fall time	f _{SCL} = 100 kHz	_	_	300	ns
t _{SU;STO}	stop condition set-up time		4.0	_	_	μs
C _b	bus line capacitive loading		-	_	400	pF

- [1] From 25 to 70 °C, the edge of the clock CKDATA has a shift of 1 phase compared to CKREF.
- [2] Effective bits are obtained from a Fast Fourier Transform (FFT) treatment taking 8000 acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half clock frequency (NYQUIST frequency). Conversion-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
- [3] Output data acquisition: the output data is available after the maximum sampling delay time t_{d(s)}. All the timings are given for a 10 pF capacitive load.
- [4] Pulse relative to the blank level.
- [5] The I²C-bus timings are given for use of the bus at a frequency of 100 kbit/s (100 kHz). This bus could be used at a frequency of 400 kbit/s (400 kHz).


Triple 8-bit ADC 170 Msps


Table 18: Examples of PLL settings and performance

 $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \text{ V}; T_{amb} = 25 ^{\circ}C.$

Video standards	f _{ref}	f _{clk}	N	Ko	Cz	C _P	l _P	Z	Long-term time	e jitter ^[1]
	(kHz)	(MHz)		(MHz/V)	(nF)	(nF)	(μΑ)	(k Ω)	RMS-value (ps)	peak-to-peak value (ps)
VGA: 640 × 480	31.469	25.175	800	20	68	0.15	200	4.5	242	1452
VESA: 800 × 600 (SVGA 72 Hz)	48.08	50	1040	40	68	0.15	700	1.6	225	1350
VESA: 1024 × 768 (XGA 75 Hz)	60.02	78.75	1312	40	68	0.15	400	4.5	120	720
VESA: 1280 × 1024 (SXGA 60 Hz)	63.98	108	1688	70	68	0.15	400	3.2	98	588
VESA: 1280 × 1024 (SXGA 75 Hz)	80.00	135	1688	70	68	0.15	400	4.5	70	420
VESA: 1600 × 1200 (UXGA 60 Hz)	75.00	162	2160	70	68	0.15	400	4.5	65	390

[1] PLL long-term time jitter is measured at the end of the video line, where it is at its maximum.

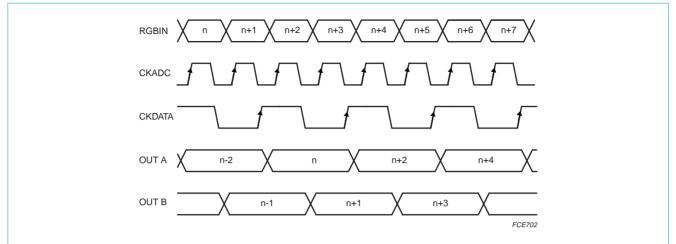


Fig 12. Timing diagram; dual port mode, interleaved outputs, even pixels on port A; Dmx = 1, Shift = 1, Odda = 0, Ckdd = 0, Ckdp = 0; n = even pixel.

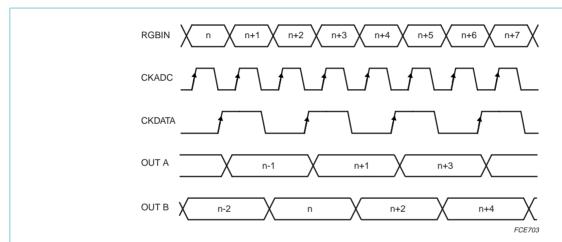


Fig 13. Timing diagram; dual port mode, interleaved outputs, odd pixels on port A; Dmx = 1, Shift = 1, Odda = 1, Ckdd = 0, Ckdp = 0; n = even pixel.

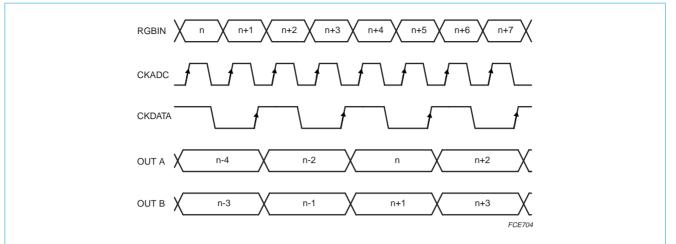


Fig 14. Timing diagram; dual port mode, synchronized outputs, even pixels on port A; Dmx = 1, Shift = 0, Odda = 0, Ckdd = 0, Ckdp = 0; n = even pixel.

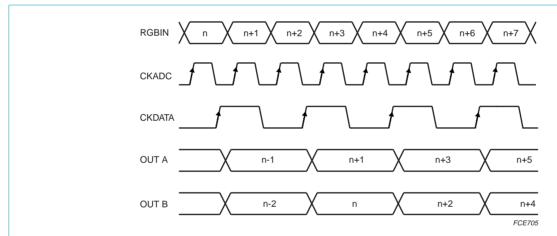
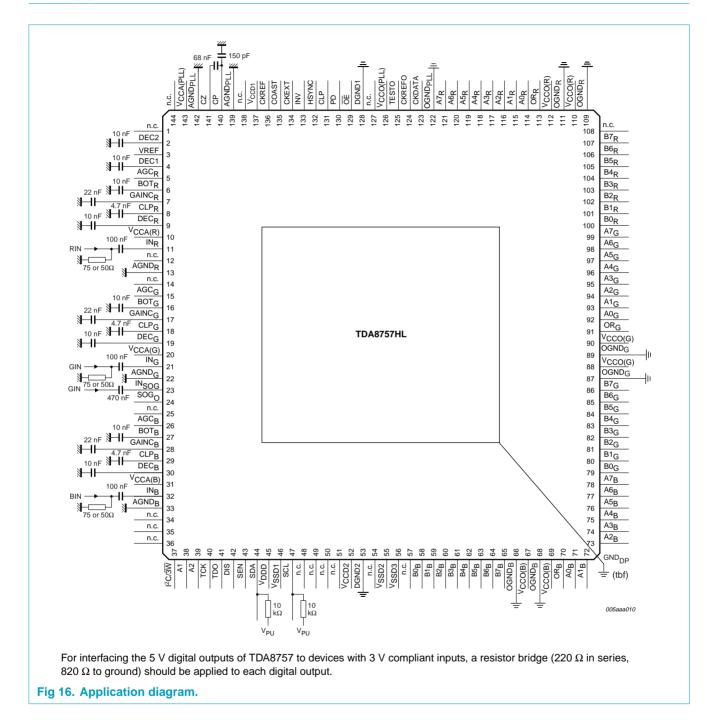
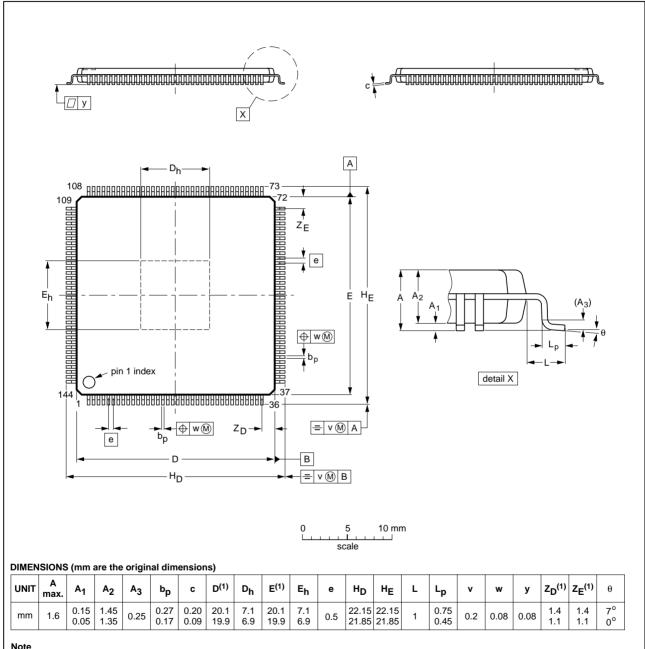



Fig 15. Timing diagram; dual port mode, synchronized outputs, odd pixels on port A; Dmx = 1, Shift = 0, Odda = 1, Ckdd = 0, Ckdp = 0; n = even pixel.

Triple 8-bit ADC 170 Msps

13. Application information



TDA8757

14. Package outline

HLQFP144: plastic thermal enhanced low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm; exposed die pad

SOT612-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT612-1		MS-026			00-03-22 02-01-25

Fig 17. Package outline.

Triple 8-bit ADC 170 Msps

15. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

16. Soldering

16.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

16.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C small/thin packages.

16.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

9397 750 09457

Triple 8-bit ADC 170 Msps

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

16.5 Package related soldering information

Table 19: Suitability of surface mount IC packages for wave and reflow soldering methods

Package	Soldering method	hod		
	Wave	Reflow ^[1]		
BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable		
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ^[2]	suitable		
PLCC ^[3] , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended[3][4]	suitable		
SSOP, TSSOP, VSO	not recommended ^[5]	suitable		

- [1] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [2] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [3] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [4] Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [5] Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

Triple 8-bit ADC 170 Msps

17. Revision history

Table 20: Revision history

Rev	Date	CPCN	Description
07	20020228	-	Preliminary data (9397 750 09457); seventh version

Triple 8-bit ADC 170 Msps

18. Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definition
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

19. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

21. Licenses

Purchase of Philips I²C components

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

Contact information

For additional information, please visit http://www.semiconductors.philips.com.
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

Fax: +31 40 27 24825

Triple 8-bit ADC 170 Msps

Contents

1	General description 2
2	Features
3	Applications
4	Quick reference data
5	Ordering information 4
6	Block diagram 4
7	Pinning information
7.1	Pinning
7.1 7.2	Pin description
8	Functional description
8.1	Analog video inputs
8.2	Clamps
8.2.1	Variable gain amplifiers
8.2.2	Important recommendations
8.2.3	ADCs
8.2.4	Data outputs
8.2.5	PLL
9	I ² C-bus and 3W-bus interfaces
9.1	Register definitions
9.1.1	Subaddress
9.1.2	Offset register
9.1.3	Coarse and Fine registers
9.1.4	Control register
9.1.5	VCO register
9.1.6	Divider register 20
9.1.7	Phase register 20
9.1.8	DEMUX register 21
9.1.9	Power-down mode
9.2	l ² C-bus protocol
9.3	3W-bus protocol
10	Limiting values
11	Thermal characteristics 23
12	Characteristics
13	Application information
14	Package outline
15	Handling information
16	Soldering
16.1	Introduction to soldering surface mount
	packages
16.2	Reflow soldering
16.3	Wave soldering
16.4	Manual soldering
16.5	Package related soldering information 34
17	Revision history
18	Data sheet status
19	Definitions

© Koninklijke Philips Electronics N.V.	2002.	PHILIPS	

20

21

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 28 February 2002 Document order number: 9397 750 09457

Printed in The Netherlands

